

Human TNFα ELISA Set

Instructions for use

Catalogue numbers:	1x96 tests:	EA101312
	5x96 tests	EA101313
	10x96 tests	EA101314
	15x96 tests	EA101315
	20x96 tests	EA101316

For research use only

Fast Track Your Research.....

Table of Contents

1.	Intended use	2
2.	Introduction	2
2.1.	Summary	2
2.2.	Basic principle of a typical ELISA method	3
3.	Reagents provided and reconstitution	3
4.	Materials required but not provided	4
5.	Storage Instructions	4
6.	Specimen collection, processing & storage	5
7.	Safety & precautions for use	5
8.	Plate Preparation	6
8.1.	Capture Antibody	6
8.2.	Preparation method	6
9.	Assay Preparation	6
9.1.	Assay Design	6
9.2.	Preparation of Standard	7
9.3.	Preparation of Biotinylated anti-TNF α Detection Antibody	7
9.4.	Preparation of Streptavidin-HRP	7
10.	Method	8
11.	Data Analysis	9
12.	Assay limitations	9
13.	Performance Characteristics	9
13.1.	Sensitivity	9
13.2	Specificity	9
14.	Bibliography	10
15.	References	10

HumanTNF α ELISA Set

1. Intended use

The OriGeneTNF α ELISA Set is intended for use in a 'do it yourself' solid phase sandwich ELISA for the *invitro* qualitative and quantitative determination of TNF α in supernatants, buffered solutions, serum, plasma samples and other body fluids.

This assay will recognise both natural and recombinant human TNF α .

This kit has been configured for research use only.

2. Introduction

2.1. Summary

Tumor Necrosis Factor (TNF α), also known as cachectin, is a polypeptide cytokine produced by monocytes and macrophages. It functions as a multipotent modulator of immune response and further acts as a potent pyrogen (4, 17). TNF α circulates throughout the body responding to stimuli (infectious agents or tissue injury), activating neutrophils, altering the properties of vascular endothelial cells, regulating metabolic activities of other tissues, as well as exhibiting tumoricidal activity by inducing localized blood clotting. TNF α also inhibits lipoprotein lipase activity resulting in cachexia, a physical wasting condition (4, 17). Activation of B-cells by the Epstein Barr virus can be inhibited by TNF α (15). Due to its varied actions throughout the immune system, TNF α may play a role in the pathogenesis of many disease states.

TNF- α production is mediated by the action of lymphokines and endotoxins on the macrophage. Purified monocytes produce TNF α within four hours of stimulation by recombinant IL-2 (9) and there is some in vitro evidence to suggest that TNF α is expressed at high levels and with prolonged kinetics in T cells stimulated by both CD2 and CD28 (5). Secretion of TNF α is enhanced by gamma interferon. TNF α then induces or enhances the specific production of Class I MHC antigen, GM-CSF, and IL-1. Recent evidence has suggested an intracellular role for this peptide (23).

TNF α may play a significant role in the pathogenesis of inflammatory disease of the joints and other tissues. Chin et al. (6) found that TNF α , along with gamma interferon and IL-1 increased cell surface expression of ICAM -1 on synovial fibroblasts. Alvaro-Garcia et al. (3) reported that TNF α _stimulates synovial proliferation.

Waage et al. (25) found that increased levels of TNF α in patients with septicemia and meningococcal disease correlated with fatal outcome. Scuderi et al. (22) suggest that increased levels of this cytokine may play a role in the host defense mechanism against parasitic infections. Girardin et al. (12) reported that increased serum TNF α levels correlated with the number of risk factors involved in children with gramnegative sepsis and purpura fulminians. Elevated levels of TNF α were also found in individuals suffering from myocarditis (11).

Recently, a growing body of information has pointed to a role for TNF α in the pathogenesis of AIDS. Alveolar macrophages (AM) from HIV positive individuals with opportunistic lung infections have been shown to spontaneously produce higher levels of TNF α in vitro than those HIV positive individuals without infection and HIV negative controls (14, 16). Krishnan et al. (16) report that higher TNF α production by AM was associated with lower counts of pneumocystis carinii in broncheoalveolar lavage fluid, indicating that TNF α may play a role in the control of this infection in AIDS. Israel-Biet et al. (14) also reported in in-vitro studies, that AM that express HIV (p24+) released significantly higher levels of TNF α than p24- alveolar macrophages and controls. Reddy et al. (20) found persistently elevated levels of circulating TNF α in HIV seropositive individuals and suggest a possible involvement of this cytokine in the development of AIDS.

Measurement of TNF α levels has also been shown to be useful in transplant research, where Maury et al. (18) and McLaughlin et al. (19). Both reported TNF α to be markedly elevated in renal allograft rejection episodes. Recent evidence has been presented on increased TNF α levels in Bone Marrow Transplant (BMT)

(13, 21). BMT patients with major transplant related complications such as interstitial pneumonitis and severe acute graft-versus - host disease had TNF α levels significantly increase over controls (13).

2.2. Basic principle of a typical ELISA method

A capture Antibody highly specific for $\mathsf{TNF}\alpha$ is coated to the wells a microtitre strip plate. Binding of $\mathsf{TNF}\alpha$ samples and known standards to the capture antibodies and subsequent binding of the biotinylated anti- $\mathsf{TNF}\alpha$ secondary antibody to the analyte is completed during the same incubation period. Any excess unbound analyte and secondary antibody is removed. The HRP conjugate solution is then added to every well including the zero wells, following incubation excess conjugate is removed by careful washing. A chromogen substrate is added to the wells resulting in the progressive development of a blue coloured complex with the conjugate. The colour development is then stopped by the addition of acid turning the resultant final product yellow. The intensity of the produced coloured complex is directly proportional to the concentration of $\mathsf{TNF}\alpha$ present in the samples and standards. The absorbance of the colour complex is then measured and the generated OD values for each standard are plotted against expected concentration forming a standard curve. This standard curve can then be used to accurately determine the concentration of $\mathsf{TNF}\alpha$ in any sample tested.

3. Reagents provided and reconstitution

(Details below shown for the 5x96 set)

Reagents (Store@2-8°C)	Quantity 5x96 well kit Cat no. EA101313	Reconstitution
TNFα Standard: 800pg/ml	5 vials	Reconstitute as directed on the vial (see Assay preparation, section9)
Capture Antibody	1 vial (0.5ml)	Sterile, dilute prior to use (see Plate preparation, section8)
Biotinylated anti- TNFα Detection Antibody	1 vial	Reconstitute with 0.55ml of reconstitution buffer prior to use (see Assay preparation, section9)
Streptavidin-HRP	1 vial (25µl)	Dilute prior to use (see Assay preparation, section9)
TMB Substrate	2 vials (25ml)	Ready to use

4. Materials required but not provided

96 well Microtitre plates (e.g. Nunc Maxisorp Cat # 468667)

Note: the use of ELISA plates which are not high affinity binding will result in lower performances.

- Reconstitution Buffer (1xPBS, 0.09% Azide)
- Coating Buffer (1xPBS, pH 7.2-7.4)
- Wash Buffer (1xPBS, 0.05% Tween20)
- Blocking Buffer (1xPBS, 5% BSA)
- Standard Dilution Buffer (1xPBS, 1% BSA)
- Secondary Antibody Dilution Buffer (1xPBS, 1% BSA)

<u>Note:</u> Supplementation with 10% Animal Serum (e.g. FCS) for serum, plasma or other body fluidssamples may be necessary

- HRP Dilution Buffer (1xPBS, 1% BSA, 0.1% Tween20)
- Stop Reagent (1M Sulfuric Acid)
- Microtitre plate reader with appropriate filters (450nm required with optional 630nm reference filter)
- Microplate washer or wash bottle
- 10, 50, 100, 200 and 1,000 µl adjustable single channel micropipettes with disposable tips
- 50-300μl multi-channel micropipette with disposable tips
- Multichannel micropipette reagent reservoirs
- Distilled water
- Vortex mixer
- Miscellaneous laboratory plastic and/or glass, if possible sterile

5. Storage Instructions

Store kit reagents between 2and 8°C. Immediately after use remaining reagents should be returned to cold storage (2-8°C). Expiry of the reagents is stated on box front labels. The expiry of the components can only be guaranteed if the components are stored properly, and if, incase of repeated use of one component, the reagent is not contaminated by the first handling.

Reconstitution Buffer: Once prepared store at 2-8°C for up to one week **Coating Buffer**: Once prepared store at 2-8°C for up to one week

Wash Buffer: Once prepared use immediately

Blocking Buffer: Once prepared store at 2-8°C for up to one week

Standard and Secondary Antibody Dilution Buffer: Once prepared store at 2-8°C for up to one week

HRP Dilution Buffer: Once prepared store at 2-8°C for up to one week

Reconstituted Biotinylated anti TNF α Detection Antibody: Once prepared store at 2-8°C for up to one

year

Reconstituted TNF α Standard: Discard after use

6. Specimen collection, processing & storage

Cell culture supernatants, human serum, plasma or other biological samples will be suitable for use in the assay. Remove serum from the clot or red cells, respectively, as soon as possible after clotting and separation.

Cell culture supernatants: Remove particulates and aggregates by spinning at approximately 1000 x g for 10 min.

Serum: Use pyrogen/endotoxin free collecting tubes. Serum should be removed rapidly and carefully from the red cells after clotting. Following clotting, centrifuge at approximately 1000 x g for 10 min and remove serum.

Plasma: EDTA, citrate and heparin plasma can be assayed. Spin samples at 1000 x g for 30 min to remove particulates. Harvest plasma.

Storage: If not analyzed shortly after collection, samples should be aliquoted (250-500µI) to avoid repeated freeze-thaw cycles and stored frozen at -70°C. Avoid multiple freeze-thaw cycles of frozen specimens.

Recommendation: Do not thaw by heating at 37°C or 56°C. Thaw at room temperature and make sure that sample is completely thawed and homogeneous before use. When possible avoid use of badly haemolysed or lipemic sera. If large amounts of particles are present these should be removed prior to use by centrifugation or filtration.

7. Safety & precautions for use

- Handling of reagents, serum or plasma specimens should be in accordance with local safety procedures,
 e.g.CDC/NIH Health manual: "Biosafety in Microbiological and Biomedical Laboratories" 1984
- Avoid any skin contact with H₂SO₄ and TMB. In case of contact, wash thoroughly with water
- Do not eat, drink, smoke or apply cosmetics where kit reagents are used
- Do not pipette by mouth
- When not in use, kit components should be stored refrigerated or frozen as indicated on vials or bottles labels
- All reagents should be warmed to room temperature before use. Lyophilized standards should be discarded after use
- Cover or cap all reagents when not in use
- Do not mix or interchange reagents between different lots
- Do not use reagents beyond the expiration date of the kit
- Use a clean disposable plastic pipette tip for each reagent, standard, or specimen addition in order to avoid cross contamination, for the dispensing of H₂SO₄ and substrate solution, avoid pipettes with metal parts
- Use a clean plastic container to prepare the washing solution
- Thoroughly mix the reagents and samples before use by agitation or swirling
- All residual washing liquid must be drained from the wells by efficient aspiration or by decantation followed by tapping the plate forcefully on absorbent paper. Never insert absorbent paper directly into the wells
- The TMB solution is light sensitive. Avoid prolonged exposure to light. Also, avoid contact of the TMB solution with metal to prevent colour development. Warning TMB is toxic avoid direct contact with hands. Dispose off properly
- If a dark blue colour develops within a few minutes after preparation, this indicates that the TMB solution has been contaminated and must be discarded. Read absorbance's within 1 hour after completion of the assay
- When pipetting reagents, maintain a consistent order of addition from well-to-well. This will ensure equal incubation times for all wells
- Follow incubation times described in the assay procedure
- Dispense the TMB solution within 15 min of the washing of the microtiter plate

8. Plate Preparation

8.1. Capture Antibody

It is recommended to centrifuge vial for a few seconds in a microcentrifuge to collect all the volume at the bottom.

For one plate add 100µl of Capture Antibody into 10mL of Coating Buffer.

8.2. Preparation method

1.	Addition	Add 100μl of diluted Capture Antibody to every well			
2.	Incubation	Cover with a plastic plate cover and incubate at 4°C overnight			
3.	Wash	Remove the cover and wash the plate as follows: a) Aspirate the liquid from each well b) Dispense 0.4 ml of washing solution into each well c) Aspirate the contents of each well d) Repeat step b and c			
4.	Addition	Add 250μl of Blocking Buffer to every well			
5.	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to 25°C) for 2 hour(s)			
6.	Wash	Remove the cover and wash the plate as follows: a) Aspirate the liquid from each well b) Dispense 0.4 ml of washing solution into each well c) Aspirate the contents of each well d) Repeat step b and c another 2 times			

For Immediate use of the plate(s) continue to section 9.

If you wish to store the coated and blocked plates for future use, bench dry each plate at room temperature (18 to 25°C) for 24 hours. Cover the plates and then store at 2-8°C in a sealed plastic bag with desiccant for up to 12months.

9. Assay Preparation

Bring all reagents to room temperature before use

9.1. Assay Design

Determine the number of microwell strips required to test the desired number of samples plus appropriate number of wells needed for running zeros and standards. Each sample, standard and zero should be tested **in duplicate**.

Example plate layout(example shown for a 6 point standard curve)

	Standards		Sample Wells									
	1	2	3	4	5	6	7	8	9	10	11	12
Α	800	800										
В	400	400										
С	200	200										
D	100	100										
E	50	50										
F	25	25										
G	zero	zero										
Н												

All remaining empty wells can be used to test samples in duplicate

9.2. Preparation of Standard

Standard vials must be reconstituted with the volume of standard dilution buffer shown on the vial immediately prior to use. This reconstitution gives a stock solution of 800pg/ml of $TNF\alpha$. **Mix the reconstituted standard gently by inversion only**. Serial dilutions of the standard are made directly in the assay plate to provide the concentration range from 800 to 25pg/ml. A fresh standard curve should be produced for each new assay.

- Immediately after reconstitution add 200µl of the reconstituted standard to wells A1 and A2, which provides the highest concentration standard at 800pg/ml
- Add 100µl of appropriate standard dilution buffer to the remaining standard wells B1 and B2 to F1 and F2
- Transfer 100µl from wells A1 and A2 to B1 and B2. Mix the well contents by repeated aspirations and ejections taking care not to scratch the inner surface of the wells
- Continue this 1:1 dilution using 100μl from wells B1 and B2 through to wells F1 and F2 providing a serial diluted standard curve ranging from 800pg/ml to 25pg/ml
- Discard 100μl from the final wells of the standard curve (F1 and F2)

Alternatively these dilutions can be performed in separate clean tubes and immediately transferred directly into the relevant wells.

9.3. Preparation of Biotinylated anti-TNF α Detection Antibody

It is recommended this reagent is prepared **immediately before use**. Dilute the reconstituted biotinylated anti-TNF α with the secondary antibody dilution buffer in an appropriate clean glass vial.

For one plate add 100µl of the reconstituted detection antibody into 5mL of secondary antibody dilution buffer.

Please note for 1 x 96 tests, Biotinylated detection antibody is provided in liquid form.

9.4. Preparation of Streptavidin-HRP

It is recommended to centrifuge vial for a few seconds in a microcentrifuge to collect all the volume at the bottom.

Dilute 5μ I of Streptavidin-HRP into 0.5ml of HRP dilution buffer**immediately before use.** Take 150 μ I of the diluted HRP solution into 10mL of HRP dilution buffer.

Do-not keep these solutions for future experiments.

10. Method

We strongly recommend that every vial is mixed thoroughly without foaming prior to use except the standard vialwhich must be mixed gently by inversion only.

Note: Final preparation of Biotinylated anti-TNF α (section 9.3) and Streptavidin-HRP (section 9.4) should occur immediately before use.

Assay Step		Details			
1	Preparation	Preparation Prepare Standard curve as shown in Section 9.2			
2	Addition	Add 100µl of each standard , sample , zero (Standard Dilution Buffer) to appropriate wells in duplicate			
3	Addition	Add 50µl of diluted Detection Antibody into all wells			
4	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to 25°C) for 3 hours			
5	Wash	Remove the cover and wash the plate as follows: a) Aspirate the liquid from each well b) Dispense 0.4 ml of washing solution into each well c) Aspirate the contents of each well d) Repeat step b and c			
6	Addition	Add 100µl of Streptavidin-HRP solution into all wells			
7	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to 25°C) for 30 minutes			
8	Wash	Repeat wash step 5.			
9	Addition	Add 100µl of ready-to-use TMB Substrate Solution into all wells			
10	Incubation	Incubate in the dark for 5-15 minutes * at room temperature. Avoid direct exposure to light by wrapping the plate in aluminium foil.			
11	Addition	Add 100µl of H₂SO₄:Stop Reagent into all wells			

Read the absorbance value of each well (immediately after step 11.) on a spectrophotometer using 450 nm as the primary wavelength and optionally 630 nm as the reference wave length (610 nm to 650 nm is acceptable).

^{*}Incubation time of the substrate solution is usually determined by the ELISA reader performance. Many ELISA readers only record absorbance up to 2.0 O.D. Therefore the colour development within individual microwells must be observed by the analyst, and the substrate reaction stopped before positive wells are no longer within recordable range

11. Data Analysis

Calculate the average absorbance values for each set of duplicate standards and samples. Ideally duplicates should be within 20% of the mean.

Generate a linear standard curve by plotting the average absorbance of each standard on the vertical axis versus the corresponding TNF α standard concentration on the horizontal axis.

The amount of TNF α in each sample is determined by extrapolating OD values against TNF α standard concentrations using the standard curve.

12. Assay limitations

Do not extrapolate the standard curve beyond the maximum standard curve point. The dose-response is non-linear in this region and good accuracy is difficult to obtain. Concentrated samples above the maximum standard concentration must be diluted with standard dilution buffer or with your own sample buffer to produce an OD value within the range of the standard curve. Following analysis of such samples always multiply results by the appropriate dilution factor to produce actual final concentration.

The influence of various drugs on end results has not been investigated. Bacterial or fungal contamination and laboratory cross-contamination may also cause irregular results.

Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results. Completely empty wells before dispensing fresh Washing Buffer, fill with Washing Buffer as indicated for each wash cycle and do not allow wells to sit uncovered or dry for extended periods.

Disposable pipette tips, flasks or glassware are preferred, reusable glassware must be washed and thoroughly rinsed of all detergents before use.

As with most biological assays conditions may vary from assay to assay therefore afresh standard curve must be prepared and run for every assay.

13. Performance Characteristics

13.1. Sensitivity

The sensitivity, minimum detectable dose of this TNF α antibody pair was determined using the OriGeneHumanTNF α ELISA kit (which contains the same antibodies) and was found to be **<8pg/ml**. This was determined by adding 3 standard deviations to the mean OD obtained when when the zero standard was assayed 40 times.

13.2. Specificity

The assay recognizes natural human TNF α . To define specificity of this TNF α antibody pair, several proteins were tested for cross reactivity using the OriGene Human TNF α ELISA kit (which contains the same antibodies). There was no cross reactivity observed for any protein tested (IL-1 β , IL-6, IL-12, IL-4, IL-2,IFN γ , IL-10, IL-8, and IL-13).

14. Bibliography

- 1. Aderka D., et al (1992). J. Exp. Med. 175, 323.
- Adolf G., and Apfler I. (1991). J. Immunol. Methods 143, 127.
- 3. Alvaro-Garcia J. M., et al. (1990). J. Clin. Invest. 86, 1790.
- 4. Beutler B., et al. (1988). Endo. Rev. 9, 57.
- 5. Cerdan C., et al. (1991). J. Immunol. 146, 560.
- 6. Chin J. E., et al. (1990). Arthr. Rheum. 33, 162.
- 7. Cope A. P., et al. (1992). Arthr. Rheu. 35, 1160.
- 8. Digel W., et al. (1992). J. Clin. Invest 89, 1690.
- 9. Economou J. S., et al. (1989). Immunol. 67, 514.
- 10. Engelberts I., et al. (1991). Lancet 338, 515.
- 11. Gaumond B., et al. (1988). Presented at the 88th Annual Meeting of the American Society for Microbiology.
- 12. Girardin E., et al. (1988). New Eng. J. Med. 319, 397.
- 13. Holler E., et al. (1990). Blood 75, 1011.
- 14. Israel-Biet D., et al. (1991). J. Immunol. 147, 490
- 15. Janssen O., et al. (1988). J. Immunol. 140, 125.
- 16. Krishnan V. L., et al. (1990). Clin. Exp. Immunol. 80, 156.
- 17. Maury C. P. J. (1986). Acta Med. Scan. 220, 387.
- 18. Maury P. J., et al. (1987). J. Exp. Med. 166, 1137.
- 19. McLaughlin P. J., et al. (1991). Transplantation 51, 1225.
- 20. Reddy M. M., et al. (1988). J. Acq. Imm. Def. Synd. 1, 436.
- 21. Sardas O. S., et al. (1990). Blood 76, 2639.
- 22. Scuderi P., et al. (1986). Lancet, December 13, 1364.
- 23. Smith M. R., et al. (1990). J. Immunol. 144, 560.
- 24. VanZee K. J., et al. (1992). Proc. Natl. Acad. Sci. USA. 89, 4845.
- 25. Waage A., et al. (1987). Lancet, February 14, 355.

15. References

- 1. Filaci, G. et al., J. Immunol., 2007; 179(7): 4323-4334
- 2. Haller D. et al., Clin. Diagn. Lab. Immunol., 2002; 9(3): 649 657
- 3. Noizat-Pirenne, F. et al., Haematologica, 2007; 92(12): e132-135
- 4. Popov, A. et al., J Clin Invest., 2006; 116(12): 3160-70.
- 5. Popov, A. et al., J. Immunol., 2008; 181(7): 4976-4988.
- 6. Zhang, Q. et al., Infect Immun., 2006; 74(8): 4735-43.

TECHNICAL CONSULTATION

OriGene Technologies, Inc. 9620 Medical Center Dr., Suite 200 Rockville, MD 20850

Phone: 1.888.267.4436 Fax: 301-340-9254 Email: techsupport@origene.com Web: www.origene.com

For Research Use Only Not for use in diagnostic procedures