

Human IL-6 ELISA Set

Instructions for use

Catalogue numbers: 1x96 tests: EA101287

5x96 tests: EA101288 10x96 tests: EA101289 15x96 tests: EA101290 20x96 tests: EA101291

For research use only

Fast Track Your Research.....

Table of Contents

1.	Intended use	3
2.	Introduction	3
2.1.	Summary	3
2.2.	Basic principle of a typical ELISA method	4
3.	Reagents provided and reconstitution	5
4.	Materials required but not provided	5
5.	Storage Instructions	5
6.	Specimen collection, processing & storage	6
7.	Safety & precautions for use	7
8.	Plate Preparation	8
8.1.	Capture Antibody	8
8.2.	Preparation method	8
9.	Assay Preparation	9
9.1.	Assay Design	9
9.2.	Preparation of Standard	9
9.3.	Preparation of Biotinylated anti-IL-6 Detection Antibody	10
9.4.	Preparation of Streptavidin-HRP	10
10.	Method	11
11.	Data Analysis	12
12.	Assay limitations	12
13.	Performance Characteristics	13
13.1.	Sensitivity	13
13.2.	Specificity	13
14.	Bibliography	13
15.	References	15

Human IL-6ELISA Set

1. Intended use

The OriGene IL-6 ELISA Set is intended for use in a 'do it yourself' solid phase sandwich ELISA for the *invitro* qualitative and quantitative determination of IL-6in supernatants, buffered solutions, serum, plasma samples and other body fluids. This assay will recognise both natural and recombinant human IL-6.

This kit has been configured for research use only.

2. Introduction

2.1. Summary

Interleukin-6 (IL-6) is a multi-functional cytokine that regulates immune responses, acute phase reactions and hematopoiesis and may play a central role in host defense mechanisms (13, 31). The gene for human IL-6 has been localized to chromosome 7p21 (1). The genomic sequence has been determined (36). IL-6 is usually not produced constitutively by normal cells, but its expression is readily induced by a variety of cytokines (28), lipopolysaccharide (25) or viral infections (3). The IL-6 gene product is a single chain protein with a molecular mass ranging from 21 to 28 kDa, depending on the cellular source. Extensive posttranslational modifications like N- and O-linked glycosylation (20) as well as phosphorylation (21) seem to account for this heterogeneity. The cDNA for IL-6 predicts a precursor protein of 212 amino acids (10). IL-6 is a pleiotropic cytokine produced by a variety of cells. It acts on a wide range of tissues, exerting growth-induction, growth-inhibition, and differentiation respectively, depending on the nature of the target cells.

IL-6 is involved in

- the induction of B-cell differentiation,
- the induction of acute phase proteins in liver cells,
- growth promotion of myeloma/plasmacytoma/hybridoma cells,
- induction of IL-2 and IL-2 receptor expression,
- proliferation and differentiation of T cells,
- inhibition of cell growth of certain myeloid leukemic cell lines and induction of their differentiation to macrophages,
- enhancement of IL-3-induced multipotential colony cell formation in hematopoietic stem cells and induction of maturation of megakaryocytes as a thrombopoietic factor,
- induction of mesangial cell growth,
- induction of neural differentiation of PC 12 cells and
- induction of keratinocyte growth (14).

The abnormal production of IL-6 was first suggested to be related to polyclonal B-cell activation with autoantibody production in patients with cardiac myxoma (9). Since then, IL-6 has been suggested to be involved in the pathogenesis of a variety of diseases. Measurement of IL-6 levels in serum and other body fluids thus provides more detailed insights into various pathological situations. For Example:

Infections:

Body fluids of patients with acute local bacterial or viral infections and serum of patients with gram-negative or positive bacteremia contain elevated levels of biologically active IL-6 (7, 16).

Obstetric Infections:

IL-6 has emerged as a reporter cytokine for intraamniotic infection (29).

Diseases associated with an altered immune system (polyclonal B-cell abnormalities or autoimmune diseases):

Elevated levels of circulating IL-6 have been detected in patients with cardiac myxoma (11), Castleman's disease (18), rheumatoid arthritis (12), IgM gammopathy and in those with acquired immunodeficiency syndrome (19, 23) as well as alcoholic liver cirrhosis (2, 32).

Proliferative diseases:

Elevated plasma levels of IL-6 are observed in patients with psoriasis (4, 5) and mesangial proliferative glomerulonephritis (15).

Neoplastic Diseases:

Increased systemic levels of IL-6 have been detected in patients with multiple myeloma (22), other B-cell dyscrasias (27), Lennert's T lymphoma, Castleman's disease, renal cell carcinoma (33) and various other solid tumors (17, 30).

Inflammatory responses:

IL-6 is involved in the induction of acute phase proteins and induction of fever (8). Elevated serum levels of IL-6 are also found in patients with severe burns (24, 34), in serum and plasma as a marker for predicting postoperative complications (26), in serum and urine of recipients of kidney transplants before rejection (35), in the serum of septic shock patients (6) and in patients with inflammatory arthritis and traumatic arthritis.

2.2. Basic principle of a typical ELISA method

A capture Antibody highly specific for IL-6 is coated to the wells a microtitre strip plate. Binding of IL-6 samples and known standards to the capture antibodies and subsequent binding of the biotinylated anti-IL-6 secondary antibody to the analyte is completed during the same incubation period. Any excess unbound analyte and secondary antibody is removed. The HRP conjugate solution is then added to every well including the zero wells, following incubation excess conjugate is removed by careful washing. A chromogen substrate is added to the wells resulting in the progressive development of a blue coloured complex with the conjugate. The colour development is then stopped by the addition of acid turning the resultant final product yellow. The intensity of the produced coloured complex is directly proportional to the concentration of IL-6 present in the samples and standards. The absorbance of the colour complex is then measured and the generated OD values for each standard are plotted against expected concentration forming a standard curve. This standard curve can then be used to accurately determine the concentration of IL-6 in any sample tested.

3. Reagents provided and reconstitution

(Details below shown for the 5x96 Set)

Reagents (Store@2-8°C)	Quantity 5x96 well kit Cat no. EA101288	Reconstitution				
IL-6Standard: 200pg/ml	5 vials	Reconstitute as directed on the vial (see Assay preparation, section9)				
Capture Antibody	1 vial (0.3ml)	Sterile, dilute prior to use (see Plate preparation, section8)				
Biotinylated anti-IL-6 Detection Antibody	1 vial	Reconstitute with 0.55ml of reconstitution buffer prior to use (see Assay preparation, section9)				
Streptavidin-HRP	1 vial (25µl)	Dilute prior to use (see Assay preparation, section9)				
TMB Substrate	2 vials (25ml)	Ready to use				

4. Materials required but not provided

- 96 well Microtitre plates (e.g. Nunc Maxisorp Cat # 468667)
- Reconstitution Buffer (1xPBS, 0.09% Azide)
- Coating Buffer (1xPBS, pH 7.2-7.4)
- Wash Buffer (1xPBS, 0.05% Tween20)
- Blocking Buffer (1xPBS, 5% BSA)
- Standard and Secondary Antibody Dilution Buffer (1xPBS, 1% BSA)
- HRP Diluent Buffer (1xPBS, 1% BSA, 0.1% Tween20)
- Stop Reagent (1M Sulfuric Acid)
- Microtitre plate reader with appropriate filters (450nm required with optional 620nm reference filter)
- Microplate washer or wash bottle
- 10, 50, 100, 200 and 1,000 µl adjustable single channel micropipettes with disposable tips
- 50-300μl multi-channel micropipette with disposable tips
- Multichannel micropipette reagent reservoirs
- Distilled water
- Vortex mixer
- Miscellaneous laboratory plastic and/or glass, if possible sterile

5. Storage Instructions

Store kit reagents between 2and 8°C. Immediately after use remaining reagents should be returned to cold storage (2-8°C). Expiry of the reagents is stated on box front labels. The expiry of the components can only be guaranteed if the components are stored properly, and if, incase of repeated use of one component, the reagent is not contaminated by the first handling.

Reconstitution Buffer: Once prepared store at 2-8°Cfor up to one week

Coating Buffer: Once prepared store at 2-8°C for up to one week

Wash Buffer: Once prepared use immediately

Blocking Buffer: Once prepared store at 2-8°C for up to one week

Standard and Secondary Antibody Dilution Buffer: Once prepared store at 2-8°C for up to one week

HRP Diluent Buffer: Once prepared store at 2-8°C for up to one week

Reconstituted Biotinylated anti IL-6 Detection Antibody: Once prepared store at 2-8°C for up to one

vear

Reconstituted IL-6 Standard: Discard after use

6. Specimen collection, processing & storage

Cell culture supernatants, human serum, plasma or other biological samples will be suitable for use in theassay. Remove serum from the clot or red cells, respectively, as soon as possible after clotting and separation.

Cell culture supernatants: Remove particulates and aggregates by spinning at approximately 1000 x g for 10 min.

Serum:Use pyrogen/endotoxin freecollecting tubes. Serum should be removed rapidly and carefully from the red cells after clotting. Following clotting, centrifuge at approximately 1000 x g for 10 min and remove serum.

Plasma: EDTA, citrate and heparin plasma can be assayed. Spin samples at 1000 x g for 30 min to remove particulates. Harvest plasma.

Storage: If not analyzed shortly after collection, samples should be aliquoted (250-500µl) to avoid repeated freeze-thaw cycles and stored frozen at -70°C. Avoid multiple freeze-thaw cycles of frozen specimens.

Recommendation: Do not thaw by heating at 37°C or 56°C. Thaw at room temperature and make sure that sample is completely thawed and homogeneous before use. When possible avoid use of badly haemolysed or lipemic sera. If large amounts of particles are present these should be removed prior to use by centrifugation or filtration.

7. Safety & precautions for use

- Handling of reagents, serum or plasma specimens should be in accordance with local safety procedures , e.g.CDC/NIH Health manual : " Biosafety in Microbiological and Biomedical Laboratories" 1984
- Avoid any skin contact with H₂SO₄ and TMB. In case of contact, wash thoroughly with water
- Do not eat, drink, smoke or apply cosmetics where kit reagents are used
- Do not pipette by mouth
- When not in use, kit components should be stored refrigerated or frozen as indicated on vials or bottles labels
- All reagents should be warmed to room temperature before use. Lyophilized standards should be discarded after use
- Cover or cap all reagents when not in use
- Do not mix or interchange reagents between different lots
- Do not use reagents beyond the expiration date of the kit
- Use a clean disposable plastic pipette tip for each reagent, standard, or specimen addition in order to avoid cross contamination, for the dispensing of H₂SO₄ and substrate solution, avoid pipettes with metal parts
- Use a clean plastic container to prepare the washing solution
- Thoroughly mix the reagents and samples before use by agitation or swirling
- All residual washing liquid must be drained from the wells by efficient aspiration or by decantation followed by tapping the plate forcefully on absorbent paper. Never insert absorbent paper directly into the wells
- The TMB solution is light sensitive. Avoid prolonged exposure to light. Also, avoid contact of the TMB solution with metal to prevent colour development. Warning TMB is toxic avoid direct contact with hands. Dispose off properly
- If a dark blue colour develops within a few minutes after preparation, this indicates that the TMB solution has been contaminated and must be discarded. Read absorbance's within 1 hour after completion of the assay
- When pipetting reagents, maintain a consistent order of addition from well-to-well. This will ensure equal incubation times for all wells
- Follow incubation times described in the assay procedure
- Dispense the TMB solution within 15 min of the washing of the microtitre plate

8. Plate Preparation

8.1. Capture Antibody

For one plate add 50µl of Capture Antibody into 10mL of Coating Buffer

8.2. Preparation method

1.	Addition	Add $100\mu l$ of diluted Capture Antibody to every well					
2.	Incubation	Cover with a plastic plate cover and incubate at 4°C overnight					
3.	Wash	Remove the cover and wash the plate as follows: a) Aspirate the liquid from each well b) Dispense 0.4 ml of washing solution into each well c) Aspirate the contents of each well d) Repeat step b and c					
4.	Addition	Add 250μl of Blocking Buffer to every well					
5.	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to 25°C) for 2 hour(s)					
6.	Wash	Remove the cover and wash the plate as follows: a) Aspirate the liquid from each well b) Dispense 0.4 ml of washing solution into each well c) Aspirate the contents of each well d) Repeat step b and c another 2 times					

For Immediate use of the plate(s) continue to section 9.

If you wish to store the coated and blocked plates for future use bench dry each plate at room temperature (18 to 25°C) for 24 hours. Cover the plates and then store at 2-8°C in a sealed plastic bag with desiccant for up to 12months.

9. Assay Preparation

Bring all reagents to room temperature before use

9.1. Assay Design

Determine the number of microwell strips required to test the desired number of samples plus appropriate number of wells needed for running zeros and standards. Each sample, standard and zero should be tested **in duplicate**.

Example plate layout(example shown for a 6 point standard curve)

	Standards		Sample Wells									
	1	2	3	4	5	6	7	8	9	10	11	12
Α	200	200										
В	100	100										
С	50	50										
D	25	25										
E	12.5	12.5										
F	6.25	6.25										
G	zero	zero										
Н												

All remaining empty wells can be used to test samples in duplicate

9.2. Preparation of Standard

Standard vials must be reconstituted with the volume of standard dilution buffer shown on the vial immediately prior to use. This reconstitution gives a stock solution of 200pg/ml of IL-6. **Mix the reconstituted standard gently by inversion only**. Serial dilutions of the standard are made directly in the assay plate to provide the concentration range from 200 to 6.25pg/ml. A fresh standard curve should be produced for each new assay.

- Immediately after reconstitution add 200µl of the reconstituted standard to wells A1 and A2, which provides the highest concentration standard at 200pg/ml
- Add 100 µl of appropriate standard diluent to the remaining standard wells B1 and B2 to F1 and F2
- Transfer 100µl from wells A1 and A2 to B1 and B2. Mix the well contents by repeated aspirations and ejections taking care not to scratch the inner surface of the wells
- Continue this 1:1 dilution using 100μl from wells B1 and B2 through to wells F1 and F2 providing a serial diluted standard curve ranging from 200pg/ml to 6.25pg/ml
- Discard 100µl from the final wells of the standard curve (F1 and F2)

Alternatively these dilutions can be performed in separate clean tubes and immediately transferred directly into the relevant wells.

9.3. Preparation of Biotinylated anti-IL-6 Detection Antibody

It is recommended this reagent is prepared **immediately before use**. Dilute the reconstituted biotinylated anti-IL-6 with the Biotinylated Antibody Diluent in an appropriate clean glass vial.

For one plate add 100µl of the reconstituted detection antibody into 5mL of Biotinylated Antibody dilution buffer.

Please note for 1 x 96 tests, Biotinylated detection antibody is provided in liquid form.

9.4. Preparation of Streptavidin-HRP

It is recommended to centrifuge vial for a few seconds in a microcentrifuge to collect all the volume at the bottom.

Dilute $5\mu l$ of Streptavidin-HRP into 0.5ml of HRP diluent buffer**immediately before use.** Take $150\mu l$ of the diluted HRP solution into 10mL of HRP diluent buffer.

Do-not keep these solutions for future experiments.

EA101288 Human IL-6 ELISA Set Version 6 07July 2013

10. Method

We strongly recommend that every vial is mixed thoroughly without foaming prior to use except the standard vialwhich must be mixed gently by inversion only.

Note: Final preparation of Biotinylated anti-IL-6 (section 9.3) and Streptavidin-HRP (section 9.4) should occur immediately before use.

Assay Step		Details				
1	Preparation	Preparation Prepare Standard curve as shown in Section 9.2				
2	Addition	Add $100\mu l$ of each standard , sample , zero (Standard Dilution Buffer) to appropriate wells in duplicate				
3	Addition	Add 50µl of diluted Detection Antibody into all wells				
4	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to 25°C) for 1 hour				
5	Wash	Remove the cover and wash the plate as follows: a) Aspirate the liquid from each well b) Dispense 0.4 ml of washing solution into each well c) Aspirate the contents of each well d) Repeat step b and c				
6	Addition	Add 100µl of Streptavidin-HRP solution into all wells				
7	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to 25°C) for 30 mins				
8	Wash	Repeat wash step 5.				
9	Addition	Add 100µl of ready-to-use TMB Substrate Solution into all wells				
10	Incubation	Incubate in the dark for 5-15 minutes * at room temperature. Avoid direct exposure to light by wrapping the plate in aluminium foil.				
11	Addition	Add 100µl of H₂SO₄:Stop Reagent into all wells				
Read	Read the absorbance value of each well (immediately after step 11) on a spectrophotometer using 450					

Read the absorbance value of each well (immediately after step 11.) on a spectrophotometer using 450 nm as the primary wavelength and optionally 620 nm as the reference wave length (610 nm to 650 nm is acceptable).

^{*}Incubation time of the substrate solution is usually determined by the ELISA reader performance. Many ELISA readers only record absorbance up to 2.0 O.D. Therefore the colour development within individual microwells must be observed by the analyst, and the substrate reaction stopped before positive wells are no longer within recordable range

11. Data Analysis

Calculate the average absorbance values for each set of duplicate standards and samples. Ideally duplicates should be within 20% of the mean.

Generate a linear standard curve by plotting the average absorbance of each standard on the vertical axis versus the corresponding IL-6standard concentration on the horizontal axis.

The amount of IL-6in each sample is determined by extrapolating OD values against IL-6standard concentrations using the standard curve.

12. Assay limitations

Do not extrapolate the standard curve beyond the maximum standard curve point. The dose-response is non-linear in this region and good accuracy is difficult to obtain. Concentrated samples above the maximum standard concentration must be diluted with Standard diluent or with your own sample buffer to produce an OD value within the range of the standard curve. Following analysis of such samples always multiply results by the appropriate dilution factor to produce actual final concentration.

The influence of various drugs on end results has not been investigated. Bacterial or fungal contamination and laboratory cross-contamination may also cause irregular results.

Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results. Completely empty wells before dispensing fresh Washing Buffer, fill with Washing Buffer as indicated for each wash cycle and do not allow wells to sit uncovered or dry for extended periods.

Disposable pipette tips, flasks or glassware are preferred, reusable glassware must be washed and thoroughly rinsed of all detergents before use.

As with most biological assays conditions may vary from assay to assay therefore afresh standard curve must be prepared and run for every assay.

13. Performance Characteristics

13.1. Sensitivity

The sensitivity, minimum detectable dose of this IL-6antibody pair was determined using theOriGeneIL-6ELISA kit (which contains the same antibodies) and was found to be **<2pg/ml**. This was determined by adding 3 standard deviations to the mean OD obtained when the zero standard was assayed 40 times.

13.2. Specificity

The assay recognizes natural human IL-6. To define specificity of this IL-6 antibody pair, several proteins were tested for cross reactivity using theOriGenelL-6 pre-coated ELISA kit (which contains the same antibodies). There was no cross reactivity observed for any protein tested (IL-1 α , IL-1 β , IL-10, IL-12, IFN γ , IL-4, TNF α , IL-8 and IL-13).

14. Bibliography

- 1. Bowcock A. M., J. R. Kidd, M. Lathrop, L. Danshvar, L. May, A. Ray, P. B. Sehgal, K. K. Kidd, and L. L. Cavallisforza. (1988). The human "beta-2 interferon/hepatocyte stimulating factor interleukin-6"gene: DNA polymorphism studies and localization to chromosome 7p21.Genomics 3, 8-16.
- 2. Byl B., I. Roucloux, A. Crusiaux, E. Dupont, and J. Deviere. (1993). Tumor Necrosis Factor-alpha and Interleukin-6 plasma levels in infected cirrhotic patients. Gastroenterology 104, 1492-1497.
- 3. Cayphas S., J. Van Damme, A. Vink, R. J. Simpson, A. Billiau, and J. Van Snick, (1987). Identification of an interleukin HPI like plasmacytoma growth factor produced by L cells in response to viral infection. J. Immunol. 139, 2965-2969.
- 4. Elder J. T., C. I. Sartor, D. K. Boman, S. Benrazavi, G. J. Fisher, and M. R. Pittelkow, (1992). Interleukin-6 in psoriasis-expression and mitogenicity studies. Arch. Derm. Res. 284, 324-332.
- 5. Grossman R. M., J. Krueger, D. Yourish, A. Granelli-Piperno, D. P., Murphy, L. T. May, T. S. Kupper, P. B. Sehgal, and A. B. Gottlieb, (1989). Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Nati. Acad. Sci. USA 86, 6367.
- 6. Hack C. E., E. R. De Groot, R. J. F. Felt -Bersma, J. H. Nuijens, R. J. M. Strack van Schijndel, A. J. M. Eerenberg-Belmer, L. G. Thjojs, and L. A. Aarden, (1989). Increased plasma levels of interleukin 6 in sepsis, Blood 74, 1704.
- 7. Helfgott D. C., S. B. Tatter, U. Santhanam, R. H. Clarick, N. Bhardwaj, L. T. May, and P. B. Sehgal. (1989). Multiple forms of IFN- β_2 /IL-6 in serum and body fouids during acute bacterial infection.J. Immunol. 142, 948.
- 8. Helle M., J. P. J. Brakenhoff, E. R. De Groot, and L. A. Aarden, (1988). Interleukin 6 is involved in interleukin-1-induced activities. Eur. J. Immunol. 18, 957 ff
- 9. Hirano T., T. Taga, N. Nakano, K. Yasukawa, S. Kashiwamura, K. Shimizu, K. Nakajima, K. H. Pyun, and T. Kishimoto. (1985). Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2).PNAS 82, 5490-5494.
- 10. Hirano T., K. Yasukawa, H. Harada, T. Taga, Y. Watanabe, T. Matsuda, S.I. Kashiwamura, K. Nakajima, K. Koyama, A. Iwamatsu, S. Tsunasawa, F. Sakiyama, H. Matsui, Y. Takahara, T. Taniguchi, and T. Kishimoto, (1986). Complementary DNA for a novel human interleukin (BSF-2) that ind uces B lymphocytes to produce immunoglobulin.Nature 324, 73-76.
- 11. Hirano T., T. Taga, K. Yasukawa, K. Nakajima, N. Nakano, F. Takatsuki, M. Shimizu, A. Murashima, S. Tsunasawa, F. Sakiyama, and T. Kishimoto, (1987). Human B-cell differentiation factor defined by an antipeptide antibody and its possible role in autoantibody production. PNAS 84, 228-231.
- 12. Hirano T., T. Matsuda, M. Turner, N. Miyasaka, G. Buchan, B. Tang, K. Sato, M. Shimizu, R. Maini, M. Feldmann, and T. Kishimoto, (1988). Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur. J. Immunol. 18, 1797-1801.
- 13. Hirano T.. and T. Kishimoto. (1990). Interleukin-6. In: Handbook of Experimental Pharmacology. Peptide Growth Factors and Their Receptors. edited by M. B. Sporn. A. B. Roberts.Berlin. Springer-Verlag. pp 633-665.

- 14. Hirano T., A. Shizuo, T. Taga, and T. Kishimoto, (1990). Biological and clinical aspects of interleukin 6. Immunology Today 11, 443-449.
- 15. Horii Y., M. Iwano, E. Hir ata, H. Shiiki, Y. Fujii, K. Dohi, and H. Ishikawa, (1993). Role of interleukin-6 in the progression of mesangial proliferative glomerulonephritis. Kidney Intern. 43, 71-75.
- 16. Houssiau F. A., K. Bukasa, C. J. M. Sindic, J. Van Damme, and J. Van Snick. (1988). Elevated levels of the 26k human hybridoma growth factor (interleukin 6) in cerebrospinal fluid of patients with acute infection of the central nervous system. Clin. Exp. Immunol. 71, 320ff.
- 17. Kishimoto T. (1989). The biology of interleukin-6.Blood 74. 1-10.
- 18. Kishimoto T., and T. Hirano. (1988). Molecular regulation of B lymphocyte response. Ann. Rev. Immunol. 6. 485-512.
- 19. O. Martinezmaza. (1992). IL-6 and AIDS.Res. Immunol. 143. 764-769.
- 20. May L. T., J. Grayeb. U. Santhanam, S. B. Tatter, Z. Sthoeger, D. C. Helfgott, N. Chiorazzi, G. Grieninger, and P. B. Sehgal. (1988). Synthesis and secretion of multiple forms of b2-interferon/B-cell differentiation factor 2 hepatocyte-stimulating factor by human fibroblasts and monocytes. J. Biol. Chem. 263, 7760-7766.
- 21. May L. T.. U. Santhana. S. B. Tatter. D. C. Helfgott. A. Ray. J. Ghrayeb. and P. B. Sehgal. (1988). Phosphorylation of secreted forms of human b2-interferon/hepatocyte-stimulating factor interleukin-6. Biochem. Biophys. Res. Comm. 152. 1144-1150.
- 22. Merico F., L. Bergui, M. G. Gregoretti, P. Ghia, G. Aimo, I. J. D. Lindley, and F. Caligariscappio, (1993). Cytokines involved in the progression of multiple myeloma. Clin. Exp. Immunol, 92, 27-31.
- 23. Nakajima K.. O.Martinez-Maza. T. Hirano. E. C. Breen. P. G. Nishanian. J. F. Salazar-Gonzalez. J. L. Fahey. and T. Kishimoto. (1989). Induction of IL-6 (B cell stimulatory factor-2/IFN-□) production by HIV.J. Immunol. 142. 531ff.
- 24. Nijsten M. W. N.. E. R. De Groot. H. J. Ten Duis. H. J. Klasen. C. E. Hack. and L. A. Aarden (1987). Serum levels of interleukin-6 and acute phase responses.Lancet II. 921ff.
- 25. Nordan R.. and M. Potter. (1986). A macrophage-derived factor required by plasmacytomas for survival and proliferation in vitro. Science 233. 566-569.
- 26. Oka Y., A. Murata, J. Nishijima, T. Yasuda, N. Hiraoka, Y. Ohmachi, K. Kitagawa, T. Yasuda, H. Toda, N. Tanaka, and T. Mori, (1992). Circulating interleukin 6 as a useful marker for predicting postoperative complications. Cytokine 4, 298-304.
- 27. Pettersson T., K. Metsärinne, A. M. Teppo, and F. Fyhrquist, (1992). Immunoreactive interleukin-6 in serum of patients with B-lymphoproliferative diseases. J. Int. Med. 232, 439-442.
- 28. Ray A., S. B. Tatter, U. Santhanam, D. C. Helfgott, L. T. May, and P. B. Sehgal, (1989). Regulation of expression of interleukin-6: Molecular and clinical studies. Ann. NY Acad. Sci. 557, 353-362.
- 29. Santhanam U., C. Avila, R. Romero, H. Viguet, N. Ida, S. Sakurai, and P. B. Sehgal. (1991). Cytokines in normal and abnormal parturition: Elevated amniotic fluid interleukin-6 levels in women with premature rupture of membranes associated with intrauterine infection. Cytokine 3, 155-163.
- 30. Seguchi T., K. Yokokawa, H. Sugao, E. Nakano, T. Sonoda, and A. Okuyama, (1992). Interleukin-6 activity in urine and serum in patients with bladder carcinoma. J. Urol. 148, 791-794.
- 31. Sehgal P. B., G. Greininger, and G. Tosato. (1989). Regulation of the acute phase and immune responses: Interleukin-6.Ann. NY Acad. Sci. 557. 1-583.
- 32. Sheron N., G. Bird, J. Goka, G. Alexander, and R. Williams, (1991). Elevated plasma interleukin-6 and increased severity and mortality in alcoholic hepatitis. Clin. Exp. Immunol. 84, 449-453.
- 33. Tsukamoto T. Y. Kumamoto. N. Miyao. N. Masumori. A. Takahashi. and M. Yanase. (1992). Interlukin-6 in renal cell carcinoma. J. Urol. 148. 1778-1781.
- 34. Ueyama M. I. Maruyama. M. Osame. and Y. Sawada. (1992). Marked increase in plasma interleukin-6 in burn patients. J. Lab. Clin. Med. 120. 693-698.

15. References

Audran, R. et al., Infect Immun.,2005; 73(12): 8017-26. Djouad, F. et al., Stem Cells,2007; 25: 2025 – 2032 Edfeldt K. et al., Eur. Heart J., 2004; 25(16):1447 – 1453 Hornef, M. W. et al., J Exp Med.,2002;195(5): 559-70. Noizat-Pirenne, F. et al., Haematologica,2007; 92(12): e132-135. Panasevich, S. et al., Occup. Environ. Med.,2009; 66(11): 747-753.

TECHNICAL CONSULTATION

OriGene Technologies, Inc. 9620 Medical Center Dr., Suite 200 Rockville, MD 20850

Phone: 1.888.267.4436 Fax: 301-340-9254 Email: techsupport@origene.com Web: www.origene.com

For Research Use Only Not for use in diagnostic procedures