

Product datasheet for AR09678PU-N

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

AASDHPPT (14-309, His-tag) Human Protein

Product data:

Product Type: Recombinant Proteins

Description: AASDHPPT (14-309, His-tag) human recombinant protein, 0.1 mg

Species: Human
Expression Host: E. coli

Expression cDNA Clone

or AA Sequence:

 ${
m \underline{MGSSHHHHHH}}$ SSGLVPRGSH MEGVRWAFSC GTWLPSRAEW LLAVRSIQPE EKERIGQFVF ARDAKAAMAG RLMIRKLVAE KLNIPWNHIR LQRTAKGKPV LAKDSSNPYP NFNFNISHQG

DYAVLAAEPE LQVGIDIMKT SFPGRGSIPE FFHIMKRKFT NKEWETIRSF KDEWTQLDMF

YRNWALKESF IKAIGVGLGF ELQRLEFDLS PLNLDIGQVY KETRLFLDGE EEKEWAFEES KIDEHHFVAV ALRKPDGSRH QDVPSQDDSK PTQRQFTILN FNDLMSSAVP MTPEDPSFWD CFCFTEEIPI RNGTKS

Tag: His-tag
Predicted MW: 36.4 kDa

Concentration: lot specific

Purity: >95%

Buffer: Presentation State: Purified

State: Liquid purified protein

Buffer System: 20 mM Tris-HCl Buffer (pH 8.0) containing 1 mM DTT, 10% Glycerol

Preparation: Liquid purified protein

Protein Description: Recombinant human AASDHPPT protein, fused to His-tag at N-terminus, was expressed in

E.coli and purified by using conventional chromatography.

Storage: Store undiluted at 2-8°C for up to two weeks or (in aliquots) at -20°C or -70°C for longer.

Avoid repeated freezing and thawing.

Stability: Shelf life: one year from despatch.

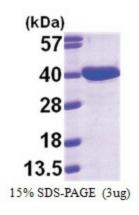
RefSeq: NP 056238

Locus ID: 60496

UniProt ID: Q9NRN7

Cytogenetics: 11q22.3

Synonyms: AASD-PPT; ACPS; CGI-80; LYS2; LYS5


Summary:

The protein encoded by this gene is similar to Saccharomyces cerevisiae LYS5, which is required for the activation of the alpha-aminoadipate dehydrogenase in the biosynthetic pathway of lysine. Yeast alpha-aminoadipate dehydrogenase converts alpha-biosynthetic-aminoadipate semialdehyde to alpha-aminoadipate. It has been suggested that defects in the human gene result in pipecolic acidemia. [provided by RefSeq, Jul 2008]

Protein Pathways:

Lysine biosynthesis, Lysine degradation, Metabolic pathways

Product images:

