

## Product datasheet for AR09641PU-L

### OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

### ECHS1 (28-290, His-tag) Human Protein

#### **Product data:**

**Product Type:** Recombinant Proteins

**Description:** ECHS1 (28-290, His-tag) human recombinant protein, 0.5 mg

Species: Human
Expression Host: E. coli

**Expression cDNA Clone** 

or AA Sequence:

MGSSHHHHHH SSGLVPRGSH MASGANFEYI IAEKRGKNNT VGLIQLNRPK ALNALCDGLI DELNQALKIF EEDPAVGAIV LTGGDKAFAA GADIKEMQNL SFQDCYSSKF LKHWDHLTQV

KKPVIAAVNG YAFGGGCELA MMCDIIYAGE KAQFAQPEIL IGTIPGAGGT QRLTRAVGKS LAMEMVLTGD RISAQDAKQA GLVSKICPVE TLVEEAIQCA EKIASNSKIV VAMAKESVNA

AFEMTLTEGS KLEKKLFYST FATDDRKEGM TAFVEKRKAN FKDQ

Tag: His-tag
Predicted MW: 30.6 kDa
Concentration: lot specific

Purity: >95% by SDS - PAGE

**Buffer:** Presentation State: Purified

State: Liquid purified protein

Buffer System: 20 mM Tris-HCl buffer (pH 8.0) containing 1 mM DTT, 20% glycerol, 100 mM

NaCl

**Preparation:** Liquid purified protein

**Protein Description:** Recombinant human ECHS1 protein, fused to His-tag at N-terminus, was expressed in E.coli

and purified by using conventional chromatography techniques.

Storage: Store undiluted at 2-8°C for up to two weeks or (in aliquots) at -20°C or -70°C for longer.

Avoid repeated freezing and thawing.

**Stability:** Shelf life: one year from despatch.

RefSeq: NP 004083

 Locus ID:
 1892

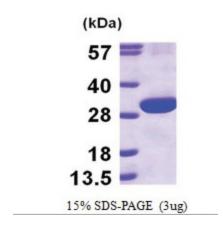
 UniProt ID:
 P30084

 Cytogenetics:
 10q26.3

**Synonyms:** Enoyl-CoA hydratase, SCEH






**Summary:** 

The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature. [provided by RefSeq, Jul 2008]

**Protein Pathways:** 

beta-Alanine metabolism, Butanoate metabolism, Fatty acid elongation in mitochondria, Fatty acid metabolism, Limonene and pinene degradation, Lysine degradation, Metabolic pathways, Propanoate metabolism, Tryptophan metabolism, Valine, leucine and isoleucine degradation

# **Product images:**

