CRISPR Knockout / Knockin kit Validation
CRISPR needs Two Components: Cas9 and guide RNA

- Cas9, the nuclease
- Guide RNA (gRNA) ---
 20bp target specific scaffold---constant, can be built in a vector, gRNA scaffold

Protospacer Adjacent Motif (NGG)
All-in-one CRISPR/Cas9 vector

Your Target Sequence

pCas-Guide
8.0 kb

pCas-Guide
• Target sequence cloning
• Expresses Cas9

Cas9 + sequence specific gRNA
targeted double-stranded break
Genome Editing Is Achieved via Repair

CRISPR/Cas9

- **Unpredicted indels**
 - mutations
 - Insertions/ deletions
 - Gene knockout

- **NHEJ**

- **HDR**

- **Donor template**

- **Desired**
 - Gene knock-out
 - Specific mutations/SNP
 - Deletion/insertion/tagging genes
 - Knock-in (reporter gene)
 - Promoter study
CRISPR/Cas9 Tools

• CRISPR/Cas vectors
• Pre-designed donor vectors
• Genome-editing Knockout kit via CRISPR, genome-wide
 ✓ 2 guide RNA vectors
 ✓ 1 GFP-puro donor vector
 (gene specific homologous arms cloned)
 ✓ 1 scramble control
KN210563 Was Used For Validation

ATG5 - human gene knockout kit via CRISPR

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Related Products</th>
<th>Validation Data</th>
<th>FAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKU</td>
<td>Description</td>
<td>Price</td>
<td>Availability</td>
</tr>
<tr>
<td>KN210563</td>
<td>ATG5 - human gene knockout kit via CRISPR</td>
<td>$1200</td>
<td>4 Weeks</td>
</tr>
</tbody>
</table>

Also for ATG5 (Locus ID 9474)
- cDNA Clone
- shRNA/siRNA
- Primer Pair
- Protein Request
- Antibody

Kit Components

- **KN210563G1**, ATG5 gRNA vector 1 in pCas-Guide vector, Target Sequence: AACTTGTTCACGCTATATC
- **KN210563G2**, ATG5 gRNA vector 2 in pCas-Guide vector, Target Sequence: AAGATGTGCTTCGAGATGTG
- **KN210563D**, donor vector containing Left and right homologous arms and GFP-Puro functional cassette. *Homologous arm and GFP-puro sequences*
- **GE100003**, scramble sequence in pCas-Guide vector
Diagram of CRISPR Knockout Kit

1. Target Sequence Cloned In pCas Guide Vector
 - pCas-Guide
 - ATG
 - 8.0 kb

2. Donor Template DNA Containing Homologous Arms & Functional Cassette
 - eg. LHA, GFP, Puro, RHA
 - PGK

3. Genome Incorporation
 - Cotransfection
 - Chromosome
 - Edited Chromosome
 - ATG
Edited Chromosome –
gene knockout / GFP-Puro knockin

✓ Target gene is knocked out
✓ GFP under endogenous gene promoter
✓ Puromycin selection marker under PGK promoter
Protocols for targeted gene knockout using CRISPR Knockout / Knockin Kit

1. Cotransfection: one of the gRNA vector + donor vector
 Controls: 1). Scramble control + donor vector
 2). Donor only

2. Dilute cells containing donor vector ~ 20 days before puro selection
 Note: Since puro selection marker is under PGK promotion,
 Episomal and randomly integrated donor vector will also give puro resistance.
Diagram of diluting cells before puro selection

- **P1**, 48 hr post transfection
 - 1:10 split
 - Grow for 3 days

Optional: Extract genomic DNA for PCR

- **P2**, 5-day post transfection
 - 1:10 split
 - Grow for 3 days

- **P3**, 8-day post transfection
 - 1:10 split
 - Grow for 3 days

- **P4**, 11-day post transfection
 - 1:10 split
 - Grow for 3 days

- **P5**, 14-day post transfection
 - 1:10 split
 - Grow for 3 days

- **P6**, 17-day post transfection
 - 1:10 split
 - Grow for 3 days

- **P7**, 20-day post transfection
 - 1:10 split

Freeze or keep growing

If puro selection is needed again
1. **Cotransfection: gRNA vector + donor vector.**
 - Controls: 1). Scramble control + donor vector
 2). Donor only

2. **Dilute cells containing episomal donor vector ~ 20 days post transfection**

 Note: Since puro selection marker under PGK promotion, Episomal and randomly integrated donor vector will also give puro resistance.

3. **Apply Puro selection. Isolate individual cell colonies**
 - Note. Doses need to be determined by kill curve for each cell line
 - Donor vector alone can randomly integrate into the genome, but the efficiency should be much lower
Puromycin selection

Donor only

pCas-Scrambled +Donor

pCas-T1 +Donor

pCas-T2 +Donor

After 5 splits, HEK293 cells were selected under 1 µg/mL puromycin for 5 days
4. Analyze puro positive cells.

A. WB to detect the knockout effect (better with single colonies)
B. Genomic PCR to verify GFP-puro integration, sequence the PCR products to confirm the integration.

Avoid Donor DNA contamination:

F primer: upstream of the 5’ end of left arm
Reverse primer: GFP region
Genomic PCR of GFP-puro Integration

Genomic DNA was extracted from cells 5 days post transfection before puro selection.
Sequencing Using The Forward Primer

Correct integration at 5’ end of left arm
Correct Integration of GFP-puro Cassette

GFP replaced ATG5
Other Donor Vectors with different FP or Luciferase

1. Target Sequence Cloned In pCas Guide Vector
 - Your Target Sequence
 - pCas-Guide 8.0 kb
 - Cotransfection
 - Genome Incorporation

2. Donor Template DNA Containing Homologous Arms & Functional Cassette
 - eg.
 - pUC
 - LHA GFP Puro PGK RHA
 - Homologous Repair

3. Genome Incorporation
 - LHA GFP Puro PGK RHA
 - Edited Chromosome
 - ATG

A. LHA GFP Puro PGK RHA
B. LHA RFP BSD' PGK Loxp RHA
C. LHA Luciferase Puro' PGK Loxp RHA
D. LHA BFP Neo' PGK RHA
Please visit us

www.origene.com

techsupport@origene.com